A Phase 1b/2 Trial of AU-011, an Investigational, Virus-Like Drug Conjugate (VDC) for the Treatment of Primary Indeterminate Lesions and Small Choroidal Melanoma (IL/CM) using Intravitreal Administration

Carol Shields, MD
on behalf of the AU-011 Program
Investigator Group

Disclosures - Carol Shields, MD

- Aura Biosciences (Consultant)

Targeted Oncology Platform: Virus-Like Drug Conjugates (VDCs)

[^0]
AU-011 is a VDC with a Novel Dual Mechanism of Action

Potential Key Differentiation: Physical Ablation May
Reduce Risk to Develop Resistance and is Genetic Mutation Agnostic
Kines et al; Cancer Immunology Research, May 2021

Phase 1b/2 IVT - Study Design

Single Dose Cohorts

3 subjects per cohort (12 total)

Phase 1b/2 - Key Patient Populations and Objectives

All Subjects Enrolled with Clinical Diagnosis of ILs or Choroidal Melanoma

Safety Evaluation (All Treated)

All Treated Subjects

Efficacy Evaluation Growth

Small Tumors with Active Growth Treated at All Doses

Small Tumors with Active

Small Tumors with Active Growth Treated with 2 Cycles

> ex ex

Primary Objective: Safety

- Drug or treatment related adverse events (AEs) / serious adverse events (SAEs)

Secondary Objective: Efficacy

- Tumor thickness growth rate before and after treatment
- Local tumor control
- Visual acuity preservation

Safety: AU-011 is Well Tolerated

Majority of Adverse Events (AEs) are transient and managed with standard of care treatment

All Treated Subjects ($\mathrm{n}=56$) Key Treatment Related Adverse Events $(\geq 10 \%$ Subjects)	Grade I	Grade II	Grade III	Total
Vitreous Inflammation	25.0\%	58.9\%*	7.1\%	91.0\%
Anterior Chamber Inflammation	37.5\%	30.4\%	3.6\%	71.5\%
Increase in Intraocular Pressure	21.4\%	25.0\%	0	46.4\%
Peritumoral RPE/ Pigmentary Changes	32.1\%	5.4\%	0	37.5\%
Keratic Precipitates	21.4\%	1.8\%	0	23.2\%
Floaters/ Vitreous Opacity	16.1\%	3.6\%	1.8\%*	21.4\%
Decreased Visual Acuity/ Vision Loss	7.1\%	12.5\%	$1.8 \%{ }^{\wedge}$	21.4\%
Eye Pain/ Soreness	8.9\%	5.4\%	0	14.3\%
Corneal Abrasion/ Epithelial Defect	1.8\%	8.9\%	0	10.7\%
Corneal Edema	10.7\%	0	0	10.7\%

Treatment Related Serious Adverse Events (n=56)

Vision Loss (juxtafoveal tumor)
3.6\%

Phase 1b/2 - Visual Acuity was Preserved in Majority of Subjects

Vision Preservation Rates Follow up 12 months		
Populations	Total Patients (n)	Vision Preservation Rate (12 months) Failure: Long term loss ≥ 15 letters
All Dose Cohorts		
All Treated Subjects	56	86\% (48/56)*
Small Tumors/Active Growth	20	80\% (16/20)*
Small Tumors/Active Growth - High Risk for Vision Loss	17	76\% (13/17)*
Therapeutic Regimen (2 cycles)		
Small Tumors/Active Growth	14	71\% (10/14)*

*1 subject had loss ≥ 15 letters at Week 52 visit which recovered within 15 letters at the next visit which was ~ 3 weeks after standard of care (SOC); all other post-SOC data excluded for all subjects

Phase 1b/2 - Statistically Significant Growth Rate Reduction

Change in Tumor Growth Follow up 12 months					
	n	Historical Growth Rate (mm/yr)	AU-011 Growth Rate (mm/yr) 12 months	Growth Rate Reduction (mm/yr)	p-value
All Dose Cohorts					
Small Tumors with Active Growth	20	0.863	0.134	-0.729	0.0006
Therapeutic Regimen (2 Cycles)					
Small Tumors with Active Growth	14	0.555	0.072	-0.483	0.0180

Tumor thickness growth rates/ slopes estimated using MMRM

Reduction in Tumor Growth Rate is Statistically Significant Supports Planned Pivotal Trial Endpoint

Phase 1b/2 - Tumor Control Achieved in Most Patients

Change from Baseline in Tumor Thickness Over 12 Months
Progression Definition Tumor Height Increase $>0.5 \mathrm{~mm}$

Tumor Control Rates 12 months

Populations	Total Patients (n)	Tumor Control Rate (at 12 months)
All Dose Cohorts	56	$54 \%(30 / 56)$
All Treated Patients	20	$60 \%(12 / 20)$
Small Tumors with Active Growth		
Therapeutic Regimen (2 Cycles)	14	$64 \%(9 / 14)$
Small Tumors with Active Growth		

Post-SOC data excluded
Tumor control failure (progression): Growth from baseline in Tumor Height $>0.5 \mathrm{~mm}$ or LBD $>1.0 \mathrm{~mm}$ due to definitive Tumor Growth (ie, not judged by the Investigator to be due to inflammation/swelling, hemorrhage or pigmentary changes) and not treated with standard of care

Summary of Ph1b/2 IVT 12 Month Clinical Results

Safety	AU-011 was well tolerated with the majority of AEs transient and managed with the standard of care.
Visual Acuity	Visual acuity preservation rate of $71-86 \%$ even in subjects with tumors close to the fovea or optic disk
Tumor Control	Tumor Control rate of 64% in subjects treated with the therapeutic regimen
mor Thickness Growth Rate	Statistically significant reduction in tumor growth rates with many subjects near or below zero ($\mathrm{p}<0.02$)
Durability of Response	All subjects in follow up Registry Trial treated only with AU-011 have stable vision and no local progression of disease (up to over 2 years follow up)
Route of Administration	Ph 1b/2 IVT: Positive data allows the start of the pivotal trial Ph 2 SC: Demonstrated initial safety and tolerability of SC Administration Study ongoing

Pivotal Trial Design in Alignment with FDA and EMA

Fast Track and Orphan Designations

Primary Endpoint

- Tumor Growth Rate at 12 months:
- Analysis will compare the growth rates between Intervention Group (High Dose) and Sham Group

Key Secondary Endpoint

- Composite time to event analysis at 12 months:
- Disease progression or visual acuity failure between Intervention Group (High Dose) and Sham Group

Adaptive Design Optimizes Probability of Success to
 Potentially Advance AU-011 in a Rare Disease with a High Unmet Medical Need

AU-011 Program Investigator Group

Dr. Carol Shields
Philadelphia, PA

Dr. Ivana Kim
Boston, MA

Columbia University
Medical Center
Dr. Brian Marr
New York, NY

Retina
Consultants Houston
Dr. Amy Schefler Houston, TX

UCLA Stein Eye Institute
Dr. Tara McCannel Los Angeles, CA

RETINAL CONSULTANTS
Dr. Tony Tsai

Stanford

OPHTHALMOLOGY
BYERS EYE INSTITUTE
Dr. Prithvi Mruthyunjaya
Palo Alto, CA

Sacramento, CA

TEXAS RETINA
Dr. Timothy Fuller Dallas, TX

University of Michigan Kellogg Eye Center

Dr. Hakan Demirci
Ann Arbor, MI

Dr. Chris Bergstrom Greenville, SC

RETINA ASSOCIATES
Experts in Medical \& Surgical Eyecare
Dr. Cameron Javid Tucson, AZ

Dr. David Reichstein Nashville, TN

Colorado Retina Associates

Peter Hovland
 Denver, CO

Nip KAISER PERMANENTE。
Dr. Michael Seider
San Francisco, CA

[^0]: 1. Kines et al; International Journal of Cancer,138;901-911, February 2016; Kines et al; Molecular Cancer Therapeutics, 17(2) February 2018; Kines et al; Cancer Immunology Research, May 2021 2. HSPGs: Heparan Sulphate Proteoglycans
