Abstract\# 5331 Biological assessment of the virus-like drug conjugate AU-011 to specifically target a breadth of human cancer types

cura
Rhonda C. Kines ${ }^{1}$, Nathan R. Fons², Elisabet de los Pinos ${ }^{1}$, John T. Schiller ${ }^{2}$
Aura Biosciences, Cambridge, MA 02140 USA; ${ }^{2}$ Laboratory of Cellular Oncology, NCI-NIH, Bethesda, MD 20892

Background

- Human papillomavirus virus-like particles (HPV VLP) preferentially target tumor cells via specifically modified heparan-sulfate proteoglycans (HSPG) on the cell surface.
- AU-011 is an investigational virus-like drug conjugate composed of a modified HPV VLP and a near infrared light (nIR) activatable small molecule. ${ }^{2}$
- Upon activation with near infrared light (nIR), AU-011 causes acute tumor cytotoxicity in vitro and in vivo. ${ }^{2,3}$

Study Goal

To explore the breadth of AU-011 efficacy on a comprehensive and diverse panel of 138 human cancer cell lines

Methods

In vitro binding and cytotoxicity of AU-011 was assessed using a pane 138 human cancer cell lines in vitro EC_{50} valus $\rightarrow 0$
 generated and the geometric mean fluorescent intensity (GMFI) of $\mathrm{AU}-011$ binding across all dilutions was used to calculate the "Area Under the Curve" (AUC)

- Publicly available gene expression data for 115 cell lines was acquired from the Cancer Cell Line Encyclopedia (CCLE) ${ }^{4}$ and was cross-referenced with the AUC values from the AU-011 binding panel to identify genetic correlates mediating AU-011 binding (i).
- Gene Set Enrichment Analysis (GSEA) ${ }^{5}$ was performed on the dataset (ii), ranked based on Spearman rho (ρ) for each gene, with most significantly enriched gene sets used for Network construction ${ }^{6}$ (iii).
- Gene Set Variant Analysis (GSVA) ${ }^{7}$ was used to calculate enrichment scores (ES) on a per-cell line basis (iv) which were then used for downstream comparisons between cell line groups.

Analysis workflow

AU-011 binding data Gene expression data

Correlation ii.	
GSEA	GSVA
iii.	iv.
Network Analysis	

References

1. Kines, R. and Cerio, R., et al. Int. J Cancer, 138(4):901-11, 2016 2. Kines, R., et al. Mol Cancer Ther, $17(2): 565-574,2018$. 3. Kines, R., et al. Can Immunol Res 9(6):693-706, 2021.
2. Subramanian, A., et al. PNAS 102(43): 15545-15550, 200
3. Reimand, J., et al. Nature Protocols 14(2): 482-517, 2019 7. Hänzelmann, S. et al. BMC Bioinformatics 14(1): 1-15, 2013.

Conclusions

- Collectively these data demonstrate the widd potential applicability of AU-011 to target a number of tumor types, particularly those derived from neural or epithelial lineages. - Correlative gene expression analysis demonstrated a strong association between AU-011 activity and genes involved in epithelial to-mesenchymal transition Correlative gene expression analysis demonstrated a strong association between
glycosaminoglycan biosynthesis/metabolism, and extracellular matrix interactions
- Expression signatures for ribosomal activity and protein translation were negatively associated with AU-011 binding and activity
- Importantly, a large portion of these tumors are accessible making their AU-011 targeting clinically translatable.

