The role of pigmentation in tumor treatment with virus-like drug conjugate belzupacar sarotalocan (AU-011) in an in vitro and vivo model

Introduction

A virus-like drug conjugate belzupacar sarotalocan (bel-sar, AU-011) [1]

- Virus-like particle conjugated to phthalocyanine photosensitizer
- Binds to tumor specific glycosaminoglycans (GAGs) on cell membrane to deliver a therapeutic payload
- For the potential treatment of Indeterminate Lesions and small Uveal Melanoma (UM) in clinic

The mechanism of light activated bel-sar[1,2,3]

- In situ tumor ablation
- Induce immunogenic cell death
- Local acute inflammatory response
- Systemic immune response

Pigmentation is a poor prognostic factor in uveal melanoma [4]

- Associated with loss of chromosome 3
- Correlated with a poor survival

Pigmentation is a barrier for applying laser treatment in UM [5]

- Limited tissue penetration
- Quencher of singlet oxygen
- Verteporfin photodynamic therapy induced less tumor regression in pigmented UM

Methods

Cell lines were used for evaluation in both in vitro and vivo models

- B16F10 wild type (wt)
- B16F10 tyrosinase knockout (TYR ko) cell line

Pigmentation and ultrastructure of melanosome were visualized via

- pellet
- light microscopy
- Electron microscopy

The vitro cytotoxicity and DAMP exposure were assessed by

- Apoptosis marker (Annexin-V, AV), necrosis marker (Propidium iodide, PI)
- Damage associated molecular patterns (DAMPs), such as
 - Calreticulin (CRT)
 - Heat shock proteins 90 (HSP90)

The vivo model was established

- In syngeneic C57BL/6 mice, subcutaneous model
- Tumor micro-environment was analysed by FACS (flow cytometry)

Results:

KO TYR produced a non-pigmented cell line with underdeveloped melanosomes (Fig. 1)

- Light grey pellet
- Non pigmented cells
- Only early stages of melanosomes

Bel-sar treatment induced immunogenic cell death (Fig. 2)

- Near complete cell death of both cell lines
- Enhanced exposure of DAMPs, CRT and HSP90
- Regardless of pigmentation

Bel-sar treatment induced tumor growth delay and a shift to M1 macrophage (Fig. 3)

- Pigmented tumors contained more M1 and fewer M2 macrophages
- Bel-sar treatment gave a shift to M1 macrophage in both models

Conclusions

- Pigmentation influenced the type of infiltrating macrophages in tumors, with more M1 macrophages in pigmented tumors than non-pigmented tumors.
- Bel-sar induced immunogenic cell death independent of pigmentation
- Bel-sar treatment also induced tumor growth delay and stimulated further M1 macrophage

References:

Contact: S.Ma@lumc.nl